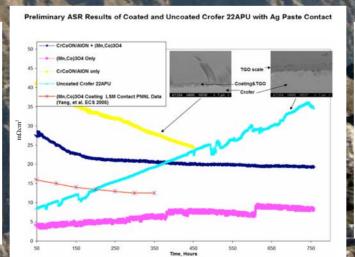
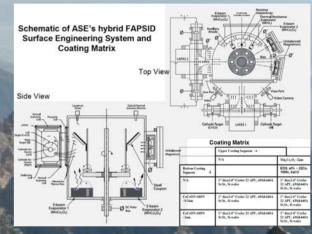
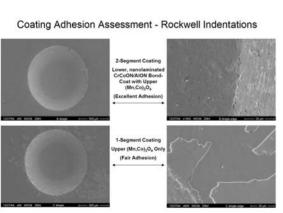

Oxidation Resistant, Cr retaining, Conductive Coatings on Metallic Alloys for SOFC Interconnects

V.I. Gorokhovsky^a, D. VanVorous^a, M.C. Deibert^b, P.E. Gannon^{a,b}
Arcomac Surface Engineering, LLC^a, in collaboration with Montana State University^b, sponsored by the Solid Energy Conversion Alliance (SECA) Core Technology Program


SOFC Metallic Interconnects


- Promise
 - Lower operating temperatures (600-800C) may allow inexpensive metallic alloys for SOFC interconnects
- Challenge
 - Conventional metallic alloys develop protective oxide scales during SOFC exposure, degrading performance


- 2-Segment Coating Concept: - 1** Segment - nanolaminated CrCoON/AION (oxidation resistant diffusion barrier, bond coating) - 2** Segment - columnar grain (IM.Co),0, (electrically conductive, Cr-retaining spinel) - Hybrid Surface Engineering Techniques - Coating deposition process combines conventional and advanced evaporation and ionization deposition (FAD-assisted EBPVO) and filtered arc-assisted e-beam evaporation physical vapor deposition (FAD-assisted EBPVO) - Simulated Performance Evaluation - Testing for SOFC compatibility: HT oxidation; electrical conductivity; and prototypical performance - ASE's Hybrid Coating Concept - (Ro, LSF or LSM) - (COC/AION nanolaminated FAD corrosion resistant bodi interior-nect interfactal stresses

Future Work

- Optimize Coating Architecture and Composition to Meet or Exceed SECA SOFC Interconnect Cost and Performance Requirements
- Expand Testing and Analyses to more Prototypical SOFC Exposure
- Assess Coating Process Scale-Up, Economics and Technology Transfer to SECA Industrial Teams

